lbwei space

Burnside's Lemma

#Abstract Algebra, Group, Counting
2023/02/18

Table of Content


Let \(G\) be a finite group acting on a finite set \(X\) and let \(X/G\) denote the set of \(G\)-orbit in \(X\).

Theorem (Burnside’s Lemma)

\[\vert X/G\vert = {1\over \vert G\vert }\sum_{g\in G}\vert X^g\vert .\]

Proof

Consider the set \(S = \{(g, x)\mid g\in G, x\in X, gx = x \}\). We will proceed with the double counting principle.

For each \(g\in G\), there are \(\vert X^g\vert\) elements in \(S\) where \(g\) is the first coordinate. Thus,

\[\vert S\vert = \sum_{g\in G}\vert X^g\vert.\]

On the other hand, for each \(x \in X\), there are \(\vert\text{Stab}_G(x)\vert\) elements in \(S\) where \(x\) is the second coordinate. Hence,

\[\sum_{g\in G}\vert X^g\vert = \sum_{x\in X}\vert \text{Stab}_G(x)\vert = \vert G\vert \sum_{x\in X}{1\over \vert G_x\vert},\]

where the last equality follows from this theorem.

Let \(\mathcal{O}_1\cdots, \mathcal{O}_r\) be the orbits, where \(r=\vert X/G\vert\). We have

\[\sum_{g\in G}\vert X^g\vert = \vert G\vert \sum_{x\in X}{1\over \vert G_x\vert} = \vert G\vert \sum_{i=1}^{r} \sum_{x\in \mathcal{O}_i} {1\over \vert G_x\vert},\]

since \(X\) can be written as a disjoint union of \(G\)-orbits.

When \(x\in \mathcal{O}_i\), \(G_x = \mathcal{O}_i\), and thus it follows that

\[\sum_{g\in G}\vert X^g\vert = \vert G\vert \sum_{i=1}^{r} \sum_{x\in \mathcal{O}_i} {1\over \vert G_x\vert} = \vert G\vert\sum_{i=1}^r 1 = r\vert G\vert.\]

Therefore,

\[\vert X/G\vert = r = {1\over \vert G\vert }\sum_{g\in G}\vert X^g\vert. \tag*{$\blacksquare$}\]

Corollary (transitive action)

If a finite group \(G\) acts transitively on \(X\), then

\[\sum_{g\in G}\vert X^g\vert = \vert G\vert.\]

Proof

By this lemma, we have \(\vert X/G\vert = 1\), which proves this corollary. ◼

See also this lemma.


Painting Problem

Question

Given a regular \(k\)-gon and \(n\) colors, determine the number of ways to paint the frames, considering rotations and reflections as equivalent.

Let \(X\) be the set of all possible ways to paint the frame, with \(\vert X\vert = n^k\). Let \(G=D_k\), the group of symmetries of the regular \(k\)-gon, consists of \(k\) rotations and \(k\) reflections. The group \(G\) acts on \(X\), and our task is to determine \(\vert X/G\vert\).

為什麼是 \(\vert X/G\vert\)?因為每個 orbit 都是一 cell,而同一 orbit 中的兩種著色法可以經由旋轉或對稱而變成對方。

Solution

By Burnside’s lemma,

\[\vert X/G\vert = {1\over \vert G\vert }\sum_{g\in G}\vert X^g\vert.\]

We can express \(G\) as the group of permutations of \(k\) edges. If the cycle notation of \(g\) consists of \(m_g\) cycles, then

\[\vert X^g\vert = n^{m_g} \text{, and} \\ \vert X/G\vert = {1\over \vert G\vert }\sum_{g\in G}n^{m_g}.\]

同一 cycle 中的邊得塗同一色。

Example (\(k=6\))

Below we discuss the elements in \(D_6\).

type ways to paint count
identity \(n^6\) \(1\)
rotation of the form \((123456)\) \(n\) \(2\)
rotation of the form \((135)(246)\) \(n^2\) \(2\)
rotation of the form \((14)(25)(36)\) \(n^3\) \(1\)
reflection: fix two edges \(n^4\) \(3\)
reflection: fix two vertices \(n^3\) \(3\)

Thus the number of possible colorings up to the action \(G\) is:

\[{1\over \vert D_6\vert}(n^6 + 3n^4 + (3+1)n^3 + 2n^2 + 2n) = {1\over 12}(n^6 + 3n^4 + 4n^3 + 2n^2 + 2n). \tag*{$\blacksquare$}\]

Remark

若 \(k = p\) 是質數,則所有 rotation 必定是 order \(p\);否則就存在 \(i\in \{1, \cdots,p\}\)、\(r\in \{1,\cdots,p-1\}\) 使得

\[i + jr = i \implies jr = 0, \ j < p.\]

這相當於是說,除了單位元素之外,\(\Bbb Z_p\) 中存在 order 不為 \(p\) 的元素,顯然矛盾。

從 \(i\) 出發,每條邊向前轉 \(r\) 單位,共轉 \(j\) 次。

鏡射軸也只能連一點一邊了,共 \(p\) 種。於是可以推知,rotation 共 \(2p - p - 1 = p-1\) 種!