lbwei space

Trace and Norm

#Abstract Algebra, Galois Theory
2023/05/08

Table of Content


假設現在已經知道 Galois group \(G\) 的某個 subgroup \(H\),如何找出對應的 subfield \(E^H\)?法一:設 \(H=\langle a\rangle\)。根據定義,對於所有 \(x\in E^H\),\(ax = x\)。由於 \(x\) 也在 \(E\) 中,我們可以將 \(x\) 表示為 \(c_0 + c_1\alpha + \cdots\) 的形式,再比較 \(ax\) 和 \(x\) 的各項係數就好!底下再提出另一種方法

Definition (trace)

Let \(E/F\) be a field extension with Galois group \(G\), and \(K\) be an intermediate field. Define the trace of \(x\in E\) on \(E/K\):

\[\text{tr}(x) = \sum_{h\in H}h(x),\]

where \(H\le G\).

Properties (trace)

  • \(\text{tr}: E\to E^H\).
  • \(\text{tr}\) is a linear transformaition.
  • \(\text{tr}\) is surjective.

Proof (image is contained in \(E^H\))

For all \(h'\in H\),

\[\begin{align*} h'(\text{tr}(x)) &= h'\big(\sum_{h\in H}h(x) \big) \\ &= \big(\sum_{h\in H}h'h(x) \big) \tag*{since $h'$ is an automorphism} \\ &= \sum_{h\in H}h(x) \tag*{left multiplication: permute} \\ &= \text{tr}(x). \tag*{$\blacksquare$} \end{align*}\]

左乘是個 bijective mapping!(試著證明)

Example

Let \(\beta\) be a basis of \(E\) over \(F\). Then \(E^H = \text{tr}(E)\) is spanned by \(\text{tr}(\beta)\).

然後再把 \(\beta\) 中的元素代入 \(\text{tr}\),解 \(E^H\) 的 basis!

待補齊…

Definition (norm)

Define the norm of \(x\in E\) on \(E/F\):

\[N_{E/F}(x) := \prod_{g\in G}g(x).\]

Theorem (matrix represnetation)

Let \(E/F\) be a finite Galois extension with the Galois group \(G\). For all \(\alpha\in E\), we have \(N_{E/F}(\alpha) = \det(L_\alpha)\) and \(\text{tr}_{E/F}(\alpha) = \text{tr}(L_\alpha)\).

\(L_\alpha\) 是左乘!

Proof hint

先明確寫出當 \(E = F(\alpha)\) 的 trace 和 norm 看看。