lbwei space

Finite Calculus

#Concrete Mathematics, Calculus
2022/08/24

離散的微積分

Table of Content


Definitions

Rising Factorial

\[\begin{eqnarray} x^{\bar n} &=& x(x+1)\cdots(x+n-1) \\ &=& (x+n-1)^{\underline{n}} \end{eqnarray}\]

Falling Factorial

\[\begin{eqnarray} x^\underline{n} &=& x(x-1)\cdots(x-n+1) \\ &=& (x-n+1)^{\bar n} \end{eqnarray}\] \[0^{\underline{n}} = 0 \iff n > 0\]

這比較常用

Difference operator (\(\Delta\))

\[\Delta f(x) \equiv f(x+1) - f(x)\]

類比於 \(Df(x) = \lim_{h\to 0}{f(x+h) - f(x)\over h}\)

polynomial 每取一次 difference,degree 就會減 1;所以 \(n\) 次 poly 取 \(n+1\) 次 \(\Delta\) 就會消失(\(=0\))

Harmonic Number

\[H_n = 1 + {1\over 2} + \cdots + {1\over n}\]

類比 \(ln(x)\)

Operations

Basics

\[1^{\bar k} = k! = k^{\underline{k}},\ k \in \mathbb{N}\] \[x^{\bar k}(-1)^k = (-x)^{\underline k}\] \[x^{\underline k}(-1)^k = (-x)^{\bar k}\]

Law of Exponents (falling factorial)

\[x^{\underline{m+n}} = x^{\underline{m}}(x-m)^{\underline{n}} \tag{1}\] \[x^{\underline{-n}} = {1\over (x+n)^{\underline{n}}}\tag{2}\] \[\Delta(x^{\underline{m}}) = mx^{\underline{m-1}} \tag{3}\]

Fundamental Theorem

\[g(x) = \Delta f(x) \iff \sum g(x)\delta x = f(x) + C\]

\(C = p(x)\) such that \(p(x+1) = p(x)\); hence \(C\) is canclled out after difference.

Definite Sum

\[g(x) = \Delta f(x),\] \[\begin{eqnarray} \sum_{x=a}^{b}g(x)\delta x &=& f(x)\Big|_a^b \\ &=& f(b) - f(a) \\ &=& \sum_{k=a}^{b-1}g(k) \tag{4} \end{eqnarray}\]

最後一個等式可由 induction 得到

可見少了 \(\delta x\) 上界減 \(1\)

\[\sum_a^b g(x)\delta x + \sum_b^c g(x)\delta x = \sum_a^c g(x)\delta x \tag{5}\] \[\begin{eqnarray} \sum_{a\leq k < b}k^{\underline{m}} \\ &=& \begin{cases} {k^{\underline{m+1} }\over m+1} \Big |_a^b\ ,\ m \not = -1 \\ H_k \Big |_a^b , \ m = -1 \\ \end{cases} \tag{6} \end{eqnarray}\]

Powers

\[\Delta(c^x) = c^{x+1} - c^x = (c-1)c^x \tag{7}\] \[\sum_{a\leq k < b}c^k = \sum_a^b c^x\delta x = {c^x\over c-1}\Big |_a^b \tag{8}\]

當 \(c=2\),\(\Delta(2^x) = 2^x\);\(2^x\) 類比 infinite calclus 的 \(e^x\)

Summation by parts

\[\sum u\Delta v = uv - \sum Ev\Delta u \tag{9}\]

\(E\) 是 operator,\(E = \Delta + 1\),也就是 \(Ef(x) = \Delta f(x) + f(x) = f(x+1)\)

Example \(\rm I\)

\[\sum_{k=0}^n k2^k = \sum_0^{n+1}x2^x\delta x = x2^x - 2^{x+1} \Big |_0^{n+1}\]

Note: 和「微積分」相關的操作要用有 \(\delta x\) 的 sum,否則上界會少一

Example \(\rm II\)

\[S_n = \sum_{k=1}^nH_k/k = \sum_{k=1}^{n+1}{H_x \over x} \delta x\]

\[u = H_x,\ \Delta v = {1 \over x}\delta x,\] \[v = H_{x-1},\ \Delta u = {1 \over x+1}\delta x\]

Note: \(v = H_{x-1}\) 而非 \(H_x\)!

\(\Delta\) 項的後方留著 \(\delta x\),幫助記憶

於是

\[\begin{eqnarray} S_n &=& H_xH_{x-1}\Big|_1^{n+1} - \sum_{k=1}^{n+1}{H_x \over x+1}\delta x \\ &=& H_n^2 + {1 \over n+1}H_n - \sum_{k=1}^{n}H_k/(k+1) \\ &=& H_n^2 - \sum_{k=1}^{n-1}H_k/(k+1) \\ &=& H_n^2 - \sum_{k=1}^{n}H_{k-1}/k, \\ \end{eqnarray}\]

\[\sum_{k=1}^{n}H_{k-1}/k = \sum_{k=1}^nH_k/k - {1 \over k^2} = S_n - H^{(2)}_n,\]

所以

\[S_n = {1 \over 2}(H^2_n + H^{(2)}_n \tag*{$\blacksquare$})\]

其實用 \(\sum_{k=1}^{n}H_{k-1}/k\) 做 summation by parts 比較輕鬆,但不容易直接想到