Finite Calculus
#Concrete Mathematics, Calculus
2022/08/24
離散的微積分
Table of Content
Definitions
Rising Factorial
\[\begin{eqnarray}
x^{\bar n} &=& x(x+1)\cdots(x+n-1) \\
&=& (x+n-1)^{\underline{n}}
\end{eqnarray}\]
Falling Factorial
\[\begin{eqnarray}
x^\underline{n} &=& x(x-1)\cdots(x-n+1) \\
&=& (x-n+1)^{\bar n}
\end{eqnarray}\]
\[0^{\underline{n}} = 0 \iff n > 0\]
這比較常用
Difference operator (\(\Delta\))
\[\Delta f(x) \equiv f(x+1) - f(x)\]
類比於 \(Df(x) = \lim_{h\to 0}{f(x+h) - f(x)\over h}\)
polynomial 每取一次 difference,degree 就會減 1;所以 \(n\) 次 poly 取 \(n+1\) 次 \(\Delta\) 就會消失(\(=0\))
Harmonic Number
\[H_n = 1 + {1\over 2} + \cdots + {1\over n}\]
類比 \(ln(x)\)
Operations
Basics
\[1^{\bar k} = k! = k^{\underline{k}},\ k \in \mathbb{N}\]
\[x^{\bar k}(-1)^k = (-x)^{\underline k}\]
\[x^{\underline k}(-1)^k = (-x)^{\bar k}\]
Law of Exponents (falling factorial)
\[x^{\underline{m+n}} = x^{\underline{m}}(x-m)^{\underline{n}} \tag{1}\]
\[x^{\underline{-n}} = {1\over (x+n)^{\underline{n}}}\tag{2}\]
\[\Delta(x^{\underline{m}}) = mx^{\underline{m-1}} \tag{3}\]
Fundamental Theorem
\[g(x) = \Delta f(x) \iff \sum g(x)\delta x = f(x) + C\]
\(C = p(x)\) such that \(p(x+1) = p(x)\); hence \(C\) is canclled out after difference.
Definite Sum
\[g(x) = \Delta f(x),\]
\[\begin{eqnarray}
\sum_{x=a}^{b}g(x)\delta x &=& f(x)\Big|_a^b \\
&=& f(b) - f(a) \\
&=& \sum_{k=a}^{b-1}g(k) \tag{4}
\end{eqnarray}\]
最後一個等式可由 induction 得到
可見少了 \(\delta x\) 上界減 \(1\)
\[\sum_a^b g(x)\delta x + \sum_b^c g(x)\delta x = \sum_a^c g(x)\delta x \tag{5}\]
\[\begin{eqnarray}
\sum_{a\leq k < b}k^{\underline{m}} \\ &=&
\begin{cases}
{k^{\underline{m+1} }\over m+1} \Big |_a^b\ ,\ m \not = -1 \\
H_k \Big |_a^b , \ m = -1 \\
\end{cases} \tag{6}
\end{eqnarray}\]
Powers
\[\Delta(c^x) = c^{x+1} - c^x = (c-1)c^x \tag{7}\]
\[\sum_{a\leq k < b}c^k = \sum_a^b c^x\delta x = {c^x\over c-1}\Big |_a^b \tag{8}\]
當 \(c=2\),\(\Delta(2^x) = 2^x\);\(2^x\) 類比 infinite calclus 的 \(e^x\)
Summation by parts
\[\sum u\Delta v = uv - \sum Ev\Delta u \tag{9}\]
\(E\) 是 operator,\(E = \Delta + 1\),也就是 \(Ef(x) = \Delta f(x) + f(x) = f(x+1)\)
Example \(\rm I\)
\[\sum_{k=0}^n k2^k = \sum_0^{n+1}x2^x\delta x = x2^x - 2^{x+1} \Big |_0^{n+1}\]
Note: 和「微積分」相關的操作要用有 \(\delta x\) 的 sum,否則上界會少一
Example \(\rm II\)
\[S_n = \sum_{k=1}^nH_k/k = \sum_{k=1}^{n+1}{H_x \over x} \delta x\]
令
\[u = H_x,\ \Delta v = {1 \over x}\delta x,\]
\[v = H_{x-1},\ \Delta u = {1 \over x+1}\delta x\]
Note: \(v = H_{x-1}\) 而非 \(H_x\)!
\(\Delta\) 項的後方留著 \(\delta x\),幫助記憶
於是
\[\begin{eqnarray}
S_n &=& H_xH_{x-1}\Big|_1^{n+1} - \sum_{k=1}^{n+1}{H_x \over x+1}\delta x \\
&=& H_n^2 + {1 \over n+1}H_n - \sum_{k=1}^{n}H_k/(k+1) \\
&=& H_n^2 - \sum_{k=1}^{n-1}H_k/(k+1) \\
&=& H_n^2 - \sum_{k=1}^{n}H_{k-1}/k, \\
\end{eqnarray}\]
又
\[\sum_{k=1}^{n}H_{k-1}/k = \sum_{k=1}^nH_k/k - {1 \over k^2} = S_n - H^{(2)}_n,\]
所以
\[S_n = {1 \over 2}(H^2_n + H^{(2)}_n \tag*{$\blacksquare$})\]
其實用 \(\sum_{k=1}^{n}H_{k-1}/k\) 做 summation by parts 比較輕鬆,但不容易直接想到