Harmonic Numbers
#Concrete Mathematics, Special Numbers
2022/09/06
Table of Content
Defintion
\[H_n = \sum_{k=1}^n {1 \over k},\ n \in \mathbb{N}\]
\(H_0 = \sum_{k=1}^0{1 \over k} = 0\),沒有除以 \(0\) 的風險
Harmonic numbers of order \(r\)
\[H^{(r)}_n = \sum_{k=1}^n{1 \over k^r}\]
Riemann’s zeta function
\[\zeta(r) = H^{(r)}_\infty = \sum_{k \geq 1}{1 \over k^r}\]
Identities
\[\lim_{n \to \infty}(H_n - \ln n) = \gamma \approx 0.577218\]
\(\gamma\): Euler’s constant
Summation
\[\sum_{0 \leq k < n}H_k = nH_n - n \tag{1}\]
summation by parts
\[\sum_{k=1}^nH^{(2)}_k = (n+1)H^{(2)}_n - H_n \tag{2}\]
改變 sum 的順序
注意上界(含不含 \(n\))
Reference
- [CMath] (p.264), Concrete Mathematics: A Foundation for Computer Science, by Ronald Graham, Donald Knuth, and Oren Patashni