Table of Contents
If \(n \perp p\) , then \(n^{p-1} \equiv 1 \pmod p\), for all \(n \in \mathbb{Z}^+\)
generalization of Fermat’s (Little) Theorem
If \(n \perp m\) , then \(n^{\phi(m)} \equiv 1 \pmod m\), for all \(n \in \mathbb{Z}^+\)
number of integers in \(\{0, 1, \cdots, m-1\}\) being relative prime to \(m\).
\(\phi(p) = p-1 \tag{1}\)
\[\phi(p^k) = p^k - p^{k-1} \tag{2}\] \[\phi(m) = m \prod_{p \setminus m} (1 - {1 \over p}) \tag{3}\] \[\sum_{d \setminus m} \phi(d) = m \tag{4}\]Assume \(m = \prod_{p \setminus m} p^{m_p}\). (質因數分解)