lbwei space

Stirling Numbers

#Concrete Mathematics, Special Numbers
2022/08/23

Table of Content


Definition

第一類 (cycle)

  • \(\begin{bmatrix}n \\ m \end{bmatrix}\)

    在 \(n\) 物中取 \(m\) 個 cycle 的數量;例如 \([1, 2, 3][4, 5]\)(\(\begin{bmatrix}5\\2\end{bmatrix}\) 之一)。

念作 n cycle k;中括號聯想到 cycle

trademark sequence: \(6, 11, 6, 1\)

若 \(k < 0,\ n \geq 0\),則定義為 \(0\)


第二類 (subset)

  • \(\begin{Bmatrix}n \\ m\end{Bmatrix}\)

    將 \(\{1, 2, \cdots, n\}\) 分為 \(m\) 個 non-empty subset 的方法數;例如 \(\{1\}, \{2, 3\}, \{4\}\) (\(\begin{Bmatrix}4 \\ 3\end{Bmatrix}\) 之一)。

念作 n subset k;大括號聯想到 set

trademark sequence: \(1, 7, 6, 1\)

若 \(k < 0,\ n \geq 0\),則定義為 \(0\)


Identities

Table 258, Table 259 可以提供關於 Stirling numbers 的靈感([CMath] p.258, 259)

邊界

\[\begin{bmatrix}n \\ 0 \end{bmatrix} = 0,\ \begin{bmatrix}0 \\ 0 \end{bmatrix} = 1;\ \begin{bmatrix}n \\ k \end{bmatrix} = 0,\ n < k\] \[\begin{Bmatrix}n \\ 0 \end{Bmatrix} = 0,\ \begin{Bmatrix}0 \\ 0 \end{Bmatrix} = 1;\ \begin{Bmatrix}n \\ k \end{Bmatrix} = 0,\ n < k\] \[\begin{bmatrix}n \\ n\end{bmatrix} = \begin{Bmatrix}n \\ n\end{Bmatrix} = 1;\ \begin{bmatrix}n \\ n-1\end{bmatrix} = \begin{Bmatrix}n \\ n-1\end{Bmatrix} = {n \choose 2}\] \[\begin{bmatrix}n \\ 1 \end{bmatrix} = (n-1)!\ ;\ \begin{Bmatrix}n \\ 2 \end{Bmatrix} = 2^{n-1}-1;\ \begin{bmatrix}n+1 \\ 2 \end{bmatrix} = n!H_n\]

Recurrrence

\[\begin{Bmatrix} n\\k\end{Bmatrix} = k\begin{Bmatrix} n-1\\k\end{Bmatrix} + \begin{Bmatrix} n-1\\k-1\end{Bmatrix},\ n \in \mathbb{Z}^+\] \[\begin{bmatrix} n\\k\end{bmatrix} = (n-1)\begin{bmatrix} n-1\\k\end{bmatrix} + \begin{bmatrix} n-1\\k-1\end{bmatrix},\ n \in \mathbb{Z}^+\]

互換

\[\begin{Bmatrix} n\\m\end{Bmatrix} = \begin{bmatrix} -m\\-n\end{bmatrix}\]

Sums

\[\sum_{k=0}^n\begin{bmatrix} n \\ k \end{bmatrix} = n!\ ,\ n \in \mathbb{N}\]

Converting between powers

\[x^n = \sum_k\begin{Bmatrix}n \\ k\end{Bmatrix}x^{\underline k} = \sum_k\begin{Bmatrix}n \\ k\end{Bmatrix}(-1)^{n-k}x^{\bar k},\ n \in \mathbb{N}\] \[x^{\bar n} = \sum_k\begin{bmatrix}n \\ k\end{bmatrix}x^k,\ n \in \mathbb{N}\] \[x^{\underline{k}} = \sum_k\begin{bmatrix}n \\ k\end{bmatrix}(-1)^{n-k}x^k,\ n \in \mathbb{N}\]

Use this identity.(有負號的)

Inversion formula

\[\sum_k\begin{Bmatrix}n \\ k\end{Bmatrix}\begin{bmatrix}k \\ m\end{bmatrix}(-1)^{n-k} = \sum_k\begin{bmatrix}n \\ k\end{bmatrix}\begin{Bmatrix}k \\ m\end{Bmatrix}(-1)^{n-k} = [m = n] \tag{1}\] \[g(n) = \sum_k\begin{Bmatrix}n \\ k\end{Bmatrix}(-1)^kf(k) \iff f(n) = \sum_k\begin{bmatrix}n \\ k\end{bmatrix}(-1)^kg(k) \tag{2}\]

Converting between powers 的公式互相代入可以證明 \((1)\),然後 \((1)\) 可以證明 \((2)\)


Reference

  • [CMath] (p.264), Concrete Mathematics: A Foundation for Computer Science, by Ronald Graham, Donald Knuth, and Oren Patashni