Stirling Numbers
#Concrete Mathematics, Special Numbers
2022/08/23
Table of Content
Definition
第一類 (cycle)
- \(\begin{bmatrix}n \\ m \end{bmatrix}\)
在 \(n\) 物中取 \(m\) 個 cycle 的數量;例如 \([1, 2, 3][4, 5]\)(\(\begin{bmatrix}5\\2\end{bmatrix}\) 之一)。
念作 n cycle k;中括號聯想到 cycle
trademark sequence: \(6, 11, 6, 1\)
若 \(k < 0,\ n \geq 0\),則定義為 \(0\)
第二類 (subset)
- \(\begin{Bmatrix}n \\ m\end{Bmatrix}\)
將 \(\{1, 2, \cdots, n\}\) 分為 \(m\) 個 non-empty subset 的方法數;例如 \(\{1\}, \{2, 3\}, \{4\}\) (\(\begin{Bmatrix}4 \\ 3\end{Bmatrix}\) 之一)。
念作 n subset k;大括號聯想到 set
trademark sequence: \(1, 7, 6, 1\)
若 \(k < 0,\ n \geq 0\),則定義為 \(0\)
Identities
Table 258, Table 259 可以提供關於 Stirling numbers 的靈感([CMath] p.258, 259)
邊界
\[\begin{bmatrix}n \\ 0 \end{bmatrix} = 0,\ \begin{bmatrix}0 \\ 0 \end{bmatrix} = 1;\ \begin{bmatrix}n \\ k \end{bmatrix} = 0,\ n < k\]
\[\begin{Bmatrix}n \\ 0 \end{Bmatrix} = 0,\ \begin{Bmatrix}0 \\ 0 \end{Bmatrix} = 1;\ \begin{Bmatrix}n \\ k \end{Bmatrix} = 0,\ n < k\]
\[\begin{bmatrix}n \\ n\end{bmatrix} = \begin{Bmatrix}n \\ n\end{Bmatrix} = 1;\ \begin{bmatrix}n \\ n-1\end{bmatrix} = \begin{Bmatrix}n \\ n-1\end{Bmatrix} = {n \choose 2}\]
\[\begin{bmatrix}n \\ 1 \end{bmatrix} = (n-1)!\ ;\ \begin{Bmatrix}n \\ 2 \end{Bmatrix} = 2^{n-1}-1;\ \begin{bmatrix}n+1 \\ 2 \end{bmatrix} = n!H_n\]
Recurrrence
\[\begin{Bmatrix} n\\k\end{Bmatrix} = k\begin{Bmatrix} n-1\\k\end{Bmatrix} + \begin{Bmatrix} n-1\\k-1\end{Bmatrix},\ n \in \mathbb{Z}^+\]
\[\begin{bmatrix} n\\k\end{bmatrix} = (n-1)\begin{bmatrix} n-1\\k\end{bmatrix} + \begin{bmatrix} n-1\\k-1\end{bmatrix},\ n \in \mathbb{Z}^+\]
互換
\[\begin{Bmatrix} n\\m\end{Bmatrix} = \begin{bmatrix} -m\\-n\end{bmatrix}\]
Sums
\[\sum_{k=0}^n\begin{bmatrix}
n \\ k
\end{bmatrix} = n!\ ,\ n \in \mathbb{N}\]
Converting between powers
\[x^n = \sum_k\begin{Bmatrix}n \\ k\end{Bmatrix}x^{\underline k} = \sum_k\begin{Bmatrix}n \\ k\end{Bmatrix}(-1)^{n-k}x^{\bar k},\ n \in \mathbb{N}\]
\[x^{\bar n} = \sum_k\begin{bmatrix}n \\ k\end{bmatrix}x^k,\ n \in \mathbb{N}\]
\[x^{\underline{k}} = \sum_k\begin{bmatrix}n \\ k\end{bmatrix}(-1)^{n-k}x^k,\ n \in \mathbb{N}\]
Use this identity.(有負號的)
\[\sum_k\begin{Bmatrix}n \\ k\end{Bmatrix}\begin{bmatrix}k \\ m\end{bmatrix}(-1)^{n-k} = \sum_k\begin{bmatrix}n \\ k\end{bmatrix}\begin{Bmatrix}k \\ m\end{Bmatrix}(-1)^{n-k} = [m = n] \tag{1}\]
\[g(n) = \sum_k\begin{Bmatrix}n \\ k\end{Bmatrix}(-1)^kf(k) \iff f(n) = \sum_k\begin{bmatrix}n \\ k\end{bmatrix}(-1)^kg(k) \tag{2}\]
將 Converting between powers 的公式互相代入可以證明 \((1)\),然後 \((1)\) 可以證明 \((2)\)
Reference
- [CMath] (p.264), Concrete Mathematics: A Foundation for Computer Science, by Ronald Graham, Donald Knuth, and Oren Patashni