Processing math: 100%

lbwei space

Hypergeometric Functions II

#Concrete Mathematics, Hypergeometric
2022/09/01

Table of Content


Hypergeometric Transformation

Reflection Law

1(1z)aF(a,b;c;z1z)=F(a,cb;c;z)

a,b 的角色可以互換(想當然爾)

Differentiation

ddzF(a1,,am;b1,,bn;z)=a1amb1bnF(a1+1,,am+1;b1+1,,bn+1;z)

Define operator D=ddz, ϑ=zD

ϑF(a1,,am;b1,,bn;z)=k0kaˉk1,aˉkmbˉk1,bˉknzkk!

底下比較有用:

(ϑ+a1)F(a1,,am;b1,,bn;z)=a1F(a1+1,,am;b1,,bn;z) (ϑ+b11)F(a1,,am;b1,,bn;z)=(b11)F(a1,,am;b11,,bn;z)

綜合 (1),(3),(4)

D(ϑ+b11)(ϑ+bn1)F=(ϑ+a1)(ϑ+am)F

然後兩邊都乘上 z

ϑ(ϑ+b11)(ϑ+bn1)F=z(ϑ+a1)(ϑ+am)F

第一個 ϑ 可以想成 (ϑ+11),對應 term ratio 中分母的 (k+1);其餘依樣對應(互相記憶的好方法!)

這個微分方程可以將解表示為 hypergeometric function

Example I

ϑG=z(ϑ+1)2G

G=F(1,1;;z)

或是用來驗證兩 identity 是否相同(是否符合同一微分方程)。

“Every new identity for hypergeometrics has consequences for binomial coefficients.” [CMath] p.222

但要注意退化

More on Differential Operators

ϑn=k{nk}zkDk znDn=k[nk](1)nkϑk

ϑD 互相轉換


Partial Hypergeometric Sums

[待續] p.237