lbwei space

Hypergeometric Functions II

#Concrete Mathematics, Hypergeometric
2022/09/01

Table of Content


Hypergeometric Transformation

Reflection Law

\[{1 \over (1-z)^a}F(a, b; c; {-z \over 1-z}) = F(a, c-b; c; z)\]

\(a, b\) 的角色可以互換(想當然爾)

Differentiation

\[{d \over dz}F(a_1, \cdots, a_m; b_1, \cdots, b_n; z) \\ = {a_1 \cdots a_m \over b_1 \cdots b_n}F(a_1+1, \cdots, a_m+1; b_1+1, \cdots, b_n+1; z) \tag{1}\]

Define operator \(D = {d \over dz},\ \vartheta = zD\)

\[\vartheta F(a_1, \cdots, a_m; b_1, \cdots, b_n; z) = \sum_{k \geq 0} k{a_1^{\bar k}, \cdots a_m^{\bar k} \over b_1^{\bar k}, \cdots b_n^{\bar k}} {z^k \over k!} \tag{2}\]

底下比較有用:

\[(\vartheta + a_1)F(a_1, \cdots, a_m; b_1, \cdots, b_n; z) \\ = a_1F(a_1+1, \cdots, a_m; b_1, \cdots, b_n; z) \tag{3}\] \[(\vartheta + b_1 - 1)F(a_1, \cdots, a_m; b_1, \cdots, b_n; z) \\ = (b_1 - 1)F(a_1, \cdots, a_m; b_1-1, \cdots, b_n; z) \tag{4}\]

綜合 \((1), (3), (4)\),

\[D(\vartheta + b_1 - 1)\cdots(\vartheta + b_n - 1)F = (\vartheta + a_1)\cdots(\vartheta + a_m)F \tag{5}\]

然後兩邊都乘上 \(z\)

\[{\vartheta}(\vartheta + b_1 - 1)\cdots(\vartheta + b_n - 1)F = z(\vartheta + a_1)\cdots(\vartheta + a_m)F \tag{6}\]

第一個 \(\vartheta\) 可以想成 \((\vartheta + 1 - 1)\),對應 term ratio 中分母的 \((k+1)\);其餘依樣對應(互相記憶的好方法!)

這個微分方程可以將解表示為 hypergeometric function

Example \(\rm I\)

\[\vartheta G = z(\vartheta+1)^2G\]

\[G = F(1,1;;z) \tag*{$\blacksquare$}\]

或是用來驗證兩 identity 是否相同(是否符合同一微分方程)。

“Every new identity for hypergeometrics has consequences for binomial coefficients.” [CMath] p.222

但要注意退化

More on Differential Operators

\[\vartheta^n = \sum_k\begin{Bmatrix}n \\ k\end{Bmatrix}z^kD^k\] \[z^nD^n = \sum_k\begin{bmatrix}n \\ k\end{bmatrix}(-1)^{n-k}\vartheta^k\]

\(\vartheta\) 和 \(D\) 互相轉換


Partial Hypergeometric Sums

[待續] p.237