use vector-matrix product to represent row reduction (or adding) in Elimination
matrix-vector product:
- 如果是 matrix-column-vector product,結果就是 the linear combination of columns of the matrix
- \(A_{m\times n}\boldsymbol{v_{n\times 1}} = \boldsymbol{b_{m\times 1}}\) (column vector 在右)
- 若為 matrix-row_vector product,結果是 the linear combination of rows of the matrix
- \(\boldsymbol{v_{1\times m}A_{m\times n}} = \boldsymbol{b_{1\times n}}\) (row vector 在左)
- vector entries are the coefficients
上述可以推廣至 matrix multiplication
Matrix 的每一 row 皆為一 linear equation,利用 matrix-row vector product 來表示某一種列運算 (the linear combination of rows);因為列運算只包含加、乘(scalar),符合 linear combination 的定義。
Gaussian Elimination of any matrix can be expressed as multiplications of matrices using only elimination and permutation matrices.
Elimination matrix: \(E_{ij}\) for row deduction
Permutation matrix: \(P_{ij}\) for row exchange
Exchange row \(i\) and row \(j\) (in identity matrix \(I\))
\(P_{ij} \times P_{ij} = I\)
e.g. \(P_{21} = \begin{bmatrix}0&1&0\\1&0&0\\0&0&1\end{bmatrix}\)
\(A\) is invertible if there exists a matrix \(B\) s.t. \(AB = BA = I\), and \(B\) is the inverse matrix of \(A\) (\(A^{-1}\)).
Note: Both right(\(AB=I\))and left(\(BA=I\))inverse must exist.
Invertible matrix must be a square matrix. (Both left inverse and right inverse exists)
If \([\ A\ | \ B\ ] \rightarrow [\ I\ | \ R\ ]\) is obtainable, then \(A^{-1} = R\).
For matrix \(A\), denote \(A^T\) as the transpose of \(A\), where the columns of \(A^T\) are the rows of \(A\).
If \(A\) is symmetric, \(A = A^T\), i.e. \(a_{ij} = a_{ji}\).
性質頗多,留待下次。