lbwei space

Matrix

#Linear Algebra

Properties

  • \(A (BC) = (AB) C\): Associative Law (結合)
  • \(AB \neq BA\): Communitative Law (交換)
  • \(A (B+C) = Ab + AC\);\((A+B) C = AB + AC\): Distributitive Law (分配)

Matrix: with Gaussian-Jordan Elimination

  • use vector-matrix product to represent row reduction (or adding) in Elimination

    matrix-vector product:

    • 如果是 matrix-column-vector product,結果就是 the linear combination of columns of the matrix
      • \(A_{m\times n}\boldsymbol{v_{n\times 1}} = \boldsymbol{b_{m\times 1}}\) (column vector 在右)
    • 若為 matrix-row_vector product,結果是 the linear combination of rows of the matrix
      • \(\boldsymbol{v_{1\times m}A_{m\times n}} = \boldsymbol{b_{1\times n}}\) (row vector 在左)
    • vector entries are the coefficients

    上述可以推廣至 matrix multiplication

Elucidation

Matrix 的每一 row 皆為一 linear equation,利用 matrix-row vector product 來表示某一種列運算 (the linear combination of rows);因為列運算只包含加、乘(scalar),符合 linear combination 的定義。

Summary

Gaussian Elimination of any matrix can be expressed as multiplications of matrices using only elimination and permutation matrices.

  • Elimination matrix: \(E_{ij}\) for row deduction

    • Reduce row \(i\) with row \(j\)
  • Permutation matrix: \(P_{ij}\) for row exchange

    • Exchange row \(i\) and row \(j\) (in identity matrix \(I\))

      \(P_{ij} \times P_{ij} = I\)
      e.g. \(P_{21} = \begin{bmatrix}0&1&0\\1&0&0\\0&0&1\end{bmatrix}\)


Inverse

Definition

\(A\) is invertible if there exists a matrix \(B\) s.t. \(AB = BA = I\), and \(B\) is the inverse matrix of \(A\) (\(A^{-1}\)).

Note: Both right(\(AB=I\))and left(\(BA=I\))inverse must exist.

Theorem

Invertible matrix must be a square matrix. (Both left inverse and right inverse exists)

Gaussain-Jordan Elimination for Finding Inverse Matrix

If \([\ A\ | \ B\ ] \rightarrow [\ I\ | \ R\ ]\) is obtainable, then \(A^{-1} = R\).


Transpose

For matrix \(A\), denote \(A^T\) as the transpose of \(A\), where the columns of \(A^T\) are the rows of \(A\).

Theorem

  1. \[(A+B)^T = A^T + B^T\]
  2. \[(AB)^T = B^TA^T\]
  3. \[(A^{-1})^T = (A^T)^{-1}\]

Symmetric

If \(A\) is symmetric, \(A = A^T\), i.e. \(a_{ij} = a_{ji}\).

性質頗多,留待下次。