Four Fundamental Subspaces
#Linear Algebra
- Column space of \(A\)
- Row space of \(A\) (column space of \(A^T\))
- Null space of \(A\)
- The null space of \(A\) consists of all solutions of \(A\boldsymbol{x} = \boldsymbol{0}\), denoted by \(N(A)\)
- Left null space of \(A\) (null space of \(A^T\))
Column Space
Define:
All linear combinations of the columns of \(A\).
All solution(s) to \(A\boldsymbol{x} = \boldsymbol{b}\).
Null Space
Define:
All solution(s) to \(A\boldsymbol{x} = \boldsymbol{0}\).
Theorem
Suppose \(A \in \mathbb{R}^{m\times n}\)
- \(C(A)\) is a subspace of \(\mathbb{R}^m\)
- \(N(A)\) is a subspace of \(\mathbb{R}^n\)
Calulation
Finding Column Space
Finding Null space
Define:
variable corresponding to pivot column: pivot variable
variable corresponding to free column (non-pivot column): free variable
- Use Gaussian-Jordan elimination: \(A \rightarrow R\) (RREF)
- Identify pivot variables and free variables.
- Identify special solutions.
- \(N(A)\) = \(span(\{special\ solutions\})\)
If there are no free variables in step 2, \(N(A)=\{\boldsymbol{0}\}\). In this case, \(dim(N(A))=0\). (因為 basis 是 \(\{\emptyset\}\))
The dimension of null space
Define:
The dimension of a null space is the number of free variables, i.e.
\(dim(N(A))\) = number of special solutions