Four Fundamental Subspaces
  #Linear Algebra
  
  
  
  - Column space of \(A\)
 
  - Row space of \(A\) (column space of \(A^T\))
 
  - Null space of \(A\)
    
      - The null space of \(A\) consists of all solutions of \(A\boldsymbol{x} = \boldsymbol{0}\), denoted by \(N(A)\)
 
    
   
  - Left null space of \(A\) (null space of \(A^T\))
 
Column Space
Define:
  All linear combinations of the columns of \(A\). 
All solution(s) to \(A\boldsymbol{x} = \boldsymbol{b}\).
Null Space
Define:
  All solution(s) to \(A\boldsymbol{x} = \boldsymbol{0}\).
Theorem
  Suppose \(A \in \mathbb{R}^{m\times n}\)
  - \(C(A)\) is a subspace of \(\mathbb{R}^m\)
 
  - \(N(A)\) is a subspace of \(\mathbb{R}^n\)
 
Calulation
Finding Column Space
Finding Null space
Define:
  variable corresponding to pivot column: pivot variable
  variable corresponding to free column (non-pivot column): free variable
  - Use Gaussian-Jordan elimination: \(A \rightarrow R\) (RREF)
 
  - Identify pivot variables and free variables.
 
  - Identify special solutions.
 
  - \(N(A)\) = \(span(\{special\ solutions\})\)
 
  If there are no free variables in step 2, \(N(A)=\{\boldsymbol{0}\}\). In this case, \(dim(N(A))=0\). (因為 basis 是 \(\{\emptyset\}\))
The dimension of null space
Define:
  The dimension of a null space is the number of free variables, i.e.
  \(dim(N(A))\) = number of special solutions