Table of Content
\[P(X \in B) = \int_B f_X(x)dx, \tag{1}\]A random variable \(X\) is called continuous if there is a nonnegative function \(f_X\), called the probability density function of \(X\), such that
for every subset \(B\) of the real line. In particular, we have
\[P(a \le X \le b) = \int^b_af_X(x)dx, \tag{2}\]and
\[\int_{-\infty}^{\infty}f_X(x)dx = 1.\]For very small length \(\delta\), we have
\[\int_x^{x+\delta}f_X(t)dt \approx f_X(x)\delta.\]為什麼叫做 density?因為上式的 \(f_X(x)\delta\) 就像密度乘長度。
\(f_X > 1\) 是合法的,因為他不是機率本身(見 \((1)\)),PMF 則直接代表機率;這點從 notation 就可以看出端倪:pmf 是 \(p_X\),而 pdf 是 \(f_X\)(pmf 有 \(p\),pdf 則非)。
另外,若 \(Z=X+Y\),
\[f_Y(y) \not = f_Y(z-x), \text{ i.e. } y \not = z-x,\]因為我們無法拿任意的 \(z\) 和 \(x\) 來對應 \(y\)(可能不存在那樣的 \(y\))。
joint:
\[f_{X,Y}(x,y), \\ P((X,Y)\in B) = {\iint}_{(x,y)\in B}f_{X,Y}(x,y)dxdy.\]用來算出機率!
marginal:
\[f_X(x) = \int^{\infty}_{-\infty}f_{X,Y}(x,y)dy.\]這是 density!
\[E(g(X,Y)) = \int^{\infty}_{-\infty}\int^{\infty}_{-\infty}g(x,y)f_{X,Y}(x,y)dxdy.\]center of gravity
linearity 依然成立。
An exponential random variable has a pdf of the form
\[f_X(x) = \begin{cases} \lambda e^{-\lambda x},\ &\text{if } x \ge 0, \\ 0, &\text{otherwise}, \end{cases}\]where \(\lambda\) is a positive parameter characterizing the pdf.
令 \(y=\lambda x\),可以輕鬆積分,驗證 integral evaluates to 1。
In particular, we have
\[P(X \ge a) = \int^{\infty}_a \lambda e^{-\lambda x}dx = e^{-\lambda a}\]Moreover,
\[E(X) = {1 \over \lambda}, \\ var(X) = {1 \over \lambda^2}.\]對比 geometric r.v.,可以發現他們的相似性!
For \(x\ge 0\),
\[\begin{align*} P(T>t+x \vert T>t) &= {P(T>t+x \text{ and }T>t) \over P(T > t)} \\ &= {P(T>t+x) \over P(T > t)} \\ &= {e^{-\lambda(t+x)} \over e^{-\lambda t}} \\ &= e^{-\lambda x} = P(T > x). \end{align*}\]以上討論的是 CDF,有別於離散情境下的 PMF。
Note: 在 continous r.v. 下,\(P(X=x)\) 是 \(0\),也就是說 \(P(T > x) = P(T \ge x)\).
A continuous r.v. \(X\) is said to be normal or Gaussian if it has a pdf of the form
\[f_X(x) = {1 \over \sqrt{2\pi}\sigma}e^{-(x-\mu)^2/2\sigma^2}.\]We denote this distribution as \(N(\mu, \sigma^2)\), and \(E(X) = \mu, \ var(X) = \sigma^2\).
A normal r.v. \(Y\) with \(\mu=0\) and \(\sigma^2=1\) is said to be a standard normal.
\(\Phi(y) = P(Y \le y)\): cdf is denoted by \(\Phi\).
For any normal r.v. \(X\) with mean \(\mu\) and variance \(\sigma\), we can standardize \(X\) by defining a new random variable \(Y\) given by
\[Y = {X-\mu \over \sigma}.\]Then we have
\[E(Y) = {E(X)-\mu \over \sigma} = 0,\ var(Y) = {var(X) \over \sigma^2} = 1.\]Thus, \(Y\) is a standard normal r.v.
standard normal 可查表。
The cdf of \(X\) becomes
\[P(X \le x) = \Phi\Big({x-\mu \over \sigma}\Big).\]CDF stands for cumulative distribution function. For every \(x\) we have
\[F_X(x) = P(X \le x) = \begin{cases} \sum_{k \le x}p_X(k), &\text{discrete,} \\ \int_{-\infty}^x f_X(t)dt,\ &\text{continous}. \end{cases}\]A cdf have the following properties
CDF 很好用!因為不管 \(X\) 是否連續,\(\{X \le x\}\) 都必定是一合法 event,而且 CDF 可以輕易轉換成 PMF 或PDF。
Let \(X = \text{max}(X_1, X_2, X_3),\) where \(X_i\) is the \(i\)-th test score and \(X\) is the final score. Assume that the score in each test takes one of the values from \(1\) to \(10\) with equal probability, independently of the scores in other tests. Find \(p_X\) and \(E(X)\) of the final score.
Solution
We have
\[\begin{align*} 1-F_X(k) = P(X>k) &= P(X_1>K, X_2>k, X_3>k) \\ &= P(X_1>k)P(X_2>k)P(X_3>k) \\ &= ({10-k \over 10})^3. \end{align*}\]Hence
\[F_X(k) = 1 - ({10-k \over 10})^3, \\ p_X(k) = ({11-k \over 10})^3 - ({10-k \over 10})^3,\]and the mean is
\[\begin{align*} E(X) &= (({10 \over 10})^3 - ({9 \over 10})^3) + 2(({9 \over 10})^3 - ({8 \over 10})^3) + \cdots + 10(({1 \over 10})^3 - ({0 \over 10})^3) \\ &= {1 \over 1000} \sum_{k=1}^{10}k^3 \\ &= 3.025 \tag*{$\blacksquare$} \end{align*}\]The cdf of a geometric r.v. with parameter \(p\) is given by
\[F_{geo}(n) = \sum_{k=1}^n p(1-p)^{k-1} = 1-(1-p)^n,\ n=1,2,\cdots,\]and that of an exponential r.v. with parameter \(\lambda > 0\) is given by
\[F_{exp}(x) = 0,\ x \le 0, \\ F_{exp}(0) = \int^x_0 \lambda e^{-\lambda t}dt = 1 - e^{-\lambda x},\ x > 0.\]Let us define \(\delta = -\ln(1-p)/\lambda\), so that
\[e^{-\lambda \delta} = 1-p,\]and hence we have
\[F_{exp}(n\delta) = F_{geo}(n),\ n = 1,2,\cdots.\]這裡可以把 \(\delta\) 想成:每 \(\delta\) 秒丟一次硬幣。當 \(\delta\) 很小的時候(\(\delta \ll 1\)),a geometric r.v. with parameter \(p\) is a close approximation to an exponential r.v. with parameter \(\lambda\)!
當 \(\delta \to 0\),離散就變成了連續。
We define
\[F_{X,Y}(x,y) = P(X\le x, Y\le y),\]and then we have
\[f_{X,Y}(x,y) = {\partial^2F_{X,Y} \over \partial x \partial y}(x,y),\]since
\[P(X\le x, Y \le y) = \int_{-\infty}^x\int_{-\infty}^yf_{X,Y}(x,y)dxdy.\]