Table of Content
未知是常數,而非隨機變數;\(p_X(x; \theta)\)。
Let \(\theta\) be the unknown value of interest, and let \(\widehat \Theta_n\) be an estimator. If
\[E[\widehat \Theta_n] = \theta,\]then we say \(\widehat \Theta_n\) is unbiased; if by the Weak Law of Large Number,
\[\widehat \Theta_n \to \theta,\]then we say \(\widehat \Theta_n\) is consistent.
當 \(\widehat \Theta_n\) 是 sample mean,上述兩性質都符合!
Here, bias represents \(E[\widehat \Theta_n-\theta]\).
An \(1-\alpha\) confidence interval is an interval \([\widehat\Theta_n^{-}, \widehat\Theta_n^{+}]\), such that for all \(\theta\),
\[P(\widehat\Theta_n^{-} \le \theta \le \widehat\Theta_n^{+}) \ge 1-\alpha\]
\(\widehat\Theta^{-}\) 和 \(\widehat\Theta^{+}\) 都是 r.v.,不能將他們替換成常數,如 \(0.12, 0.25\),否則沒有隨機性何來機率?
Confidence interval 的意義是:根據 \(n\) 次觀測,我們得到兩隨機變數,\(\widehat\Theta_n^{-}\) 與 \(\widehat\Theta_n^{+}\);而實際值 \(\theta\) 落在信賴區間 \([\widehat\Theta_n^{-}, \widehat\Theta_n^{+}]\),也就是 confidence interval 之中的機率是 \(1-\alpha\)。
Let our estimator be the sample mean of \(n\) i.i.d. r.v.s, i.e.
\[\widehat{\Theta}_n = {X_1+\cdots+X_n\over n},\]where \(E[X_i]=\theta\) and \(\text{var}(X_i)=\sigma^2\). By the CLT, we can obtain
\[P\Big({\vert\widehat\Theta_n - \theta\vert \over \sigma/\sqrt{n} } \le 1.96\Big) \approx 0.95;\]after repharsing, we have
\[P\Big(\widehat\Theta_n - {1.96\sigma\over\sqrt{n}} \le \theta \le \widehat\Theta_n + {1.96\sigma\over\sqrt{n}} \Big) \approx 0.95, \\ \widehat\Theta_n^{-} = \widehat\Theta_n - {1.96\sigma\over\sqrt{n}},\\ \widehat\Theta_n^{+} = \widehat\Theta_n + {1.96\sigma\over\sqrt{n}}.\]為什麼要取絕對值?為了對稱。
If the variance \(\sigma^2 = E[(X_i - \theta)^2]\) is unknown, we can approximate it by sample mean, according to the WLLN, i.e.
\[{1\over n}\sum^n_{i=1}(X_i-\theta)^2 \to E[(X_i - \theta)^2] = \sigma^2.\]However, \(\theta\) is also unknown. To approximate it, we use our estimator:
\[{1\over n}\sum^n_{i=1}(X_i-\widehat\Theta_n)^2 \to \sigma^2,\]by the fact that \(\widehat\Theta_n \to \theta\) when \(n\) is large.
因為 sample mean consistent!
is an unbiased random variable of \(\sigma^2\). Below is the proof.
\[\begin{align*} &E\Big[\sum^n_{i=1}(X_i-\widehat\Theta_n)^2\Big] \\ =\ &\sum^n_{i=1}E\Big[(X_i-\widehat\Theta_n)^2\Big] \\ =\ &{1\over n}E\Big[\big((X_2+\cdots+X_n\big) - (n-1)X_1)^2\Big] \\ =\ &{1\over n}\Big[(n-1)E(X_1^2) - (n-1)(n-2)E(X_1)^2 + (n-1)^2E(X_1^2) - 2(n-1)^2 E(X_1)^2\Big] \\ =\ &(n-1)\sigma^2. \end{align*}\]Divide it by \((n-1)\) would yield the result. ◼
x 可能是 vector。