Table of Content
Let \(X_n\) be the state after \(n\) transitions.
1-step
\[\begin{align*} p_{ij} &= \text{P}(X_{1}=j\mid X_0=i) \\ &= \text{P}(X_{n+1}=j\mid X_n=i) ,\text{ (time homogeneous)} \\ &= \text{P}(X_{n+1}=j \mid X_n=i,X_{n-1},\cdots,X_0) \end{align*}\]Markov property: Given the current state, the past before the previous state doesn’t matter.
只和前一 state 有關。
\(n\)-step (Chapman-Kolmogorov Equation)
\[\begin{align*} r_{ij}(n) &= \text{P}(X_{n+s}=j\mid X_s=i) \\ &= \sum_{k=1}^m r_{ik}(n-1)p_{kj} \end{align*}\]In addition,
\[r_{ij}(0) = \begin{cases} 1 &\text{if } i=j, \\ 0 &\text{if } i\not = j. \end{cases} \\ r_{ij}(1) = p_{ij}.\]If we let \(P = \big[p_{ij}\big], R_n = \big[r_{ij}(n)\big]\), then
\[R_n = R_{n-1}P = P^n.\]For a Markov chain, if
then \(r_{ij}(n) \to \pi_j\) when \(n\to \infty\), no matter what \(i\) is. Thus we have
\[\lim_{n\to \infty}r_{ij}(n) = \lim_{n\to \infty} \sum_{k=1}^m r_{ik}(n-1)p_{kj} \\ \implies \pi_j = \sum_{k=1}^m\pi_k p_{kj}.\]To solve the above system of linear equations, we also need:
\[\sum_{j=1}^m\pi_j = 1.\](recurrent) class:想像 state diagram 的強連通子圖,而 recurrent state 就是包含在 class 的 state。
periodic:將整個 class 分成 \(n\) 個子區塊,並給予編號。狀態轉移將依序從編號 \(1\) 到 \(n\),然後再回到 \(1\)。